Abstract
<p>The chemical composition of foraminiferal calcite is widely used for studying past environmental conditions and biogeochemistry. However, high rate of microbial-derived organic matter degradation and abundant dissolved metal sources in sediment and pore waters may impede the application of paleoenvironmental proxies due to formation of secondary carbonates on the outside and/or inside of foraminiferal tests. Secondary carbonate precipitation severely alters the foraminiferal geochemistry and can be difficult to eliminate through standard cleaning procedures for foraminiferal trace element analyses. Here we present results of the mineral composition and formation sequence of diagenetic coatings on the tests of foraminifera formed under extreme anoxic conditions in the Baltic Sea deepest basin (the Landsort Deep, IODP Exp. 347, Site M0063), as well as changing trace element concentrations of authigenic carbonates on the test on a millennial time-scale. The focus is on the diagenetic carbonates present on the tests of the low-oxygen tolerant benthic foraminiferal species <em>Elphidium selseyensis</em> and <em>Elphidium clavatum</em>. We applied geochemical and imaging methods by using scanning electron microscope imaging (SEM) and energy dispersive spectroscopy (EDS), synchrotron-based x-ray fluorescence microscopy (nano-XRF), RAMAN spectroscopy and laser ablation (LA)-ICP-MS, in order to ascertain the sedimentary diagenetic processes, and the foraminiferal authigenic mineral formation sequence. The authigenic carbonates were enriched in Mg, Mn, Fe and Ba, depending on the redox environmental conditions when the authigenic carbonates were precipitated. In particular, concentrations of redox-sensitive elements such as Mn and Fe were increased in bottom waters and sedimentary pore waters under oxygen-depleted conditions in the Landsort Deep, which resulted in Mn- and Fe-enriched carbonate formation. The diagenetic alteration on foraminiferal tests provides potential opportunity to investigate past sedimentary redox environment and primary productivity in the Baltic Sea.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.