Abstract

Following spinal cord injury (SCI), pathological reflexes develop that result in altered bladder function and sphincter dis-coordination, with accompanying changes in the detrusor. Bladder chemodenervation is known to ablate the pathological reflexes, but the resultant effects on the bladder tissue are poorly defined. In a rodent model of contusion SCI, we examined the effect of early bladder chemodenervation with botulinum toxin A (BoNT-A) on bladder histopathology and collagen deposition. Adult female Long Evans rats were given a severe contusion SCI at spinal level T9. The SCI rats immediately underwent open laparotomy and received detrusor injections of either BoNT-A (10 U/animal) or saline. At eight weeks post injury, the bladders were collected, weighed, and examined histologically. BoNT-A injected bladders of SCI rats (SCI + BoNT-A) weighed significantly less than saline injected bladders of SCI rats (SCI + saline) (241 ± 25 mg vs. 183 ± 42 mg; p < 0.05). Histological analyses showed that SCI resulted in significantly thicker bladder walls due to detrusor hypertrophy and fibrosis compared to bladders from uninjured animals (339 ± 89.0 μm vs. 193 ± 47.9 μm; p < 0.0001). SCI + BoNT-A animals had significantly thinner bladder walls compared to SCI + saline animals (202 ± 55.4 μm vs. 339 ± 89.0 μm; p < 0.0001). SCI + BoNT-A animals had collagen organization in the bladder walls similar to that of uninjured animals. Detrusor chemodenervation soon after SCI appears to preserve bladder tissue integrity by reducing the development of detrusor fibrosis and hypertrophy associated with SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call