Abstract
We conduct an experimental study on early detection of thermoacoustic combustion oscillations using a method combining statistical complexity and machine learning, including the characterization of intermittent combustion oscillations. Abrupt switching from aperiodic small-amplitude oscillations to periodic large-amplitude oscillations and vice versa appears in pressure fluctuations. The dynamic behavior of aperiodic small-amplitude pressure fluctuations represents chaos. The complexity-entropy causality plane effectively captures the subtle changes in the combustion state during a transition to well-developed combustion oscillations. The feature space of the complexity-entropy causality plane, which is obtained by a support vector machine, has potential use for detecting a precursor of combustion oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.