Abstract

Coriolis flowmeters have been widely employed in a variety of industrial applications. There is a potential that the measuring tube of a Coriolis flowmeter may be eroded when it is used to measure abrasive fluid such as slurry flow. However, it is challenging to verify the structural health of the flowmeter without process interruptions or using on-site calibration devices such as meter provers. This article presents an in situ structural health-monitoring technique through stiffness diagnosis to identify the potential wear occurring on the measuring tube. To measure the frequency response of a Coriolis flowmeter, which strongly depends on the structural characteristics of the tube, the tube is not only excited at a resonant frequency but also at two additional off-resonant frequencies. Through digital processing of the drive and sensor signals, the frequency response is obtained and a stiffness-related diagnostic parameter (SRDP) is extracted from a Coriolis flowmeter. The proposed stiffness diagnosis technique was experimentally evaluated on a commercial bent-tube Coriolis flowmeter with dilute sand-water slurry flow. The results illustrate that the slight tube erosion is successfully identified when a relative change in SRDP reaches -1%, showing a good capability for an early detection of tube wear. In addition, the outcomes from recalibration with water suggest that, after the erosion occurs, the flowmeter overestimates the mass flowrate and underestimates the flow density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.