Abstract

Digital images of soybean canopies [Glycine max (L.) Merrill] were obtained within selected narrow wavebands (6–10 nm bandwidths) to determine their capability for early detection of plant stress. Images and physiological measurements of stress were acquired 2 days, 4 days, and 7 days following application of control, drought, and herbicide [(3,4-dichlorophenyl)-1, 1-dimethylurea, or DCMU] treatments. As a result of frequent rainfall, drought stress never occurred. However, exposure to herbicide rapidly induced plant stress. By day 4, the ratio of variable to maximum leaf fluorescence ( F v / F m ) decreased and leaf water potentials ( ψ w ) increased in the herbicide treated soybean, indicating damage to the photosynthetic apparatus and stomatal closure. Also, Munsell leaf color had increased from approximately 5GY 4.6/5.7 to a lighter green-yellow value. Canopy reflectances at 670 nm, 694 nm, and in the 410–740 nm band ( R vis ), as well as reflectance at 694 nm divided by reflectance at 760 nm ( R 694/ R 760), detected stress simultaneously with the physiological measurements and increased consistently with stress through day 7. Reflectances at 420 nm and 600 nm, together with R 600/ R 760 and R vis / R 760, did not increase until leaves were yellow or brown and wilted and canopies had begun to collapse on day 7. None of the reflectance or reflectance ratio images detected stress prior to visible color changes. This was attributed primarily to the rapid inducement of chlorosis by the herbicide. Reflectance in narrow wavebands within the 690–700 nm region and its ratio with near-infrared reflectance should provide earlier detection of stress-induced chlorosis compared with broad band systems or narrow bands located at lesser wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call