Abstract

AbstractNeophysopella tropicalis, one of the causal agents of Asian grapevine leaf rust (AGLR), can cause severe epidemics in Brazil that lead to yield losses in commercial vineyards. An early detection of the pathogen by air sampling of urediniospores on spore traps or in symptomless leaves would be valuable to multiple studies, such as epidemics modelling, risk forecasting, monitoring of pathogen introductions in rust‐free areas, and predicting the beginning of epidemics. This study developed a quantitative PCR (qPCR) protocol to quantify N. tropicalis urediniospores attached to adhesive tapes and in grapevine leaves before symptom appearance. A specific primer pair was designed based on the internal transcribed spacer (ITS) sequence region of the AGLR pathogen. Standard amplification curves using genomic DNA from urediniospores of N. tropicalis and from urediniospores attached to adhesive tapes were established. Grapevine leaves inoculated with N. tropicalis were collected at 2, 5, and 7 days postinoculation (dpi). One primer pair (580F/720R) amplified a 140 bp product in all AGLR isolates but did not amplify products of other rust genera, such as Phakopsora, Puccinia, Hemileia, Tranzschelia, Cerotelium, and Coleosporium. As little as 0.1 pg DNA and 10 urediniospores of N. tropicalis attached to adhesive tapes could be detected. qPCR enabled the detection of the pathogen as early as 2 dpi, before symptom appearance. This method can be used to monitor N. tropicalis inoculum in grapevine‐growing areas and to quantify symptomless infections of the AGLR pathogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call