Abstract

BackgroundEmergence of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) is a major hurdle for TB control programs especially in developing countries like China. Resistance to fluoroquinolones is high among MDR-TB patients. Early diagnosis of MDR/pre-XDR-TB is essential for lowering transmission of drug-resistant TB and adjusting the treatment regimen.MethodsSmear-positive sputum specimens (n = 186) were collected from Wuhan Institute for Tuberculosis Control. The DNA was extracted from the specimens and run through a Sanger sequencing assay to detect mutations associated with MDR/pre-XDR-TB including the rpoB core region for rifampicin (RIF) resistance; katG and inhA promoter for isoniazid (INH) resistance; and gyrA for fluoroquinolone (FQ) resistance. Sequencing data were compared to phenotypic Lowenstein-Jensen (L-J) proportion method drug susceptibility testing (DST) results for performance analysis.ResultsBy comparing the mutation data with phenotypic results, the detection rates of MDR-TB and pre-XDR-TB were 84.31% (43/51) and 83.33% (20/24), respectively. The sequencing assay illustrated good sensitivity for the detection of resistance to RIF (96.92%), INH (86.89%), FQ (77.50%). The specificities of the assay were 98.35% for RIF, 99.20% for INH, and 97.26% for FQ.ConclusionsThe sequencing assay is an efficient, accurate method for detection of MDR-TB and pre-XDR-TB from clinical smear-positive sputum specimens, should be considered as a supplemental method for obtaining early DST results before the availability of phenotypic DST results. This could be of benefit to early diagnosis, adjusting the treatment regimen and controlling transmission of drug-resistant TB.

Highlights

  • Emergence of multidrug- and extensively drug-resistant tuberculosis (M/Extensively drug-resistant tuberculosis (XDR-TB)) is a major hurdle for TB control programs especially in developing countries like China

  • In order to discover multidrug-resistant tuberculosis (MDR-TB) and pre-XDR-TB patients, we report an effective method which is able to detect MDR-TB and pre-XDR-TB from smear-positive sputum by direct sequencing

  • Source of sputum specimens and the standard strain From February 2014 to January 2015, among 1233 suspected TB patients from Department of internal medicine in Wuhan Institute for Tuberculosis Control,Wuhan Pulmonary Hospital, 207 smear-positive sputum specimens were acquired, of which, 7 specimens were culturenegative, 5 specimens were contaminated, non-tubercular mycobacteria (NTM) were isolated from 4 specimens, 5 specimens were excluded due to no amplification of four resistance-associated mutation genes, 186 sputum specimens were enrolled in this study

Read more

Summary

Introduction

Emergence of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) is a major hurdle for TB control programs especially in developing countries like China. Resistance to fluoroquinolones is high among MDR-TB patients. Diagnosis of MDR/pre-XDR-TB is essential for lowering transmission of drug-resistant TB and adjusting the treatment regimen. When patients are infected with FQ-resistant MDR-TB strains, the treatment regimen needs to be adjusted and the prognosis is poor [4]. In China, among patients with MDR tuberculosis, 24.9% of those with new cases of tuberculosis and 27.5% of those with previously treated tuberculosis had resistance to ofloxacin [2]. Effective and accurate diagnosis of these MDR-TB and pre-XDR-TB patients is urgently needed for choosing a reasonable regimen and preventing transmission

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call