Abstract

The present study aimed to investigate the feasibility of using acoustic emission (AE) as a detection method for identifying failure mechanisms at the modular junction interface in total hip replacements (THRs) subjected to fretting corrosion. The experimental setup involved simulating fretting corrosion using a Ti6Al4V disc representing the femoral neck and a ZrO2 pin representing the femoral head. Mechanical testing provided insights into the wear and frictional behavior occurring at the modular junction interface. The results revealed that for all three potential conditions, a fretting condition of partial slip was observed. These findings highlight the importance of understanding the mechanical interactions and their influence on the overall performance and longevity of THRs. Electrochemical analysis shed light on the corrosion behavior under different potentiostatic conditions. High potentials in the anodic condition led to increased corrosion and ion transfer due to the breakdown of the passive oxide layer. Conversely, the cathodic potential condition exhibited a regrowth of the passive oxide layer, protecting the Ti6Al4V surface from further corrosion. The mid-range corrosion potential condition showed a dynamic equilibrium between corrosion and passivation processes. These electrochemical insights enhance our understanding of the mechanisms involved in fretting corrosion. The AE data proved to be promising in detecting and monitoring the onset and progression of failure mechanisms. The AE signals exhibited distinctive patterns that correlated with the severity of fretting corrosion. Notably, the hit driven data results, derived from AE signals, demonstrated the ability to differentiate between different levels of fretting conditions. This suggests that AE can serve as a valuable diagnostic tool for early detection and continuous monitoring of implant failure in THRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.