Abstract
Diabetes is a life-threatening disease that affects various human body organs, including eye retina. Advanced Diabetic Eye disease (DED) leads to permanent vision loss, thus an early detection of DED symptoms is essential to prevent disease escalation and timely treatment. Up till now, research challenges in early DED detection can be summarised as follows: Firstly, changes in the eye anatomy during its early stage are frequently untraceable by human eye due to subtle nature of the features, and Secondly, large volume of fundus images puts a significant strain on limited specialist resources, rendering manual analysis practically infeasible. Thus, Deep Learning-based methods have been practiced to facilitate early DED detection and address the issues currently faced. Despite promising, highly accurate detection of early anatomical changes in the eye using Deep Learning remains a challenge in wide scale practical application. Consequently, in this research we aim to address the main three research gaps and propose the framework for early automated DED detection system on fundus images through Deep Learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.