Abstract

Sound event detection is an extension of the static auditory classification task into continuous environments, where performance depends jointly upon the detection of overlapping events and their correct classification. Several approaches have been published to date which either develop novel classifiers or employ well-trained static classifiers with a detection front-end. This paper takes the latter approach, by combining a proven CNN classifier acting on spectrogram image features, with time-frequency shaped energy detection that identifies seed regions within the spectrogram that are characteristic of auditory energy events. Furthermore, the shape detector is optimised to allow early detection of events as they are developing. Since some sound events naturally have longer durations than others, waiting until completion of entire events before classification may not be practical in a deployed system. The early detection capability of the system is thus evaluated for the classification of partial events. Performance for continuous event detection is shown to be good, with accuracy being maintained well when detecting partial events. © 2018 International Speech Communication Association. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.