Abstract
Spatial and temporal changes in surface temperature of infected and non-infected rose plant (Rosa hybrida cv. ‘Angelina’) leaves were visualized using digital infrared thermography. Infected areas exhibited a presymptomatic decrease in leaf temperature up to 2.3°C.In this study, two experiments were conducted: one in the greenhouse (semi-controlled ambient conditions) and the other, in a growth chamber (controlled ambient conditions). Effect of drought stress and darkness on the thermal images were also studied in this research. It was found that thermal histograms of the infected leaves closely follow a standard normal distribution. They have a skewness near zero, kurtosis under 3, standard deviation larger than 0.6, and a Maximum Temperature Difference (MTD) more than 4. For each thermal histogram, central tendency, variability, and parameters of the best fitted Standard Normal and Laplace distributions were estimated. To classify healthy and infected leaves, feature selection was conducted and the best extracted thermal features with the largest linguistic hedge values were chosen. Among those features independent of absolute temperature measurement, MTD, SD, skewness, R2l, kurtosis and bn were selected. Then, a neuro-fuzzy classifier was trained to recognize the healthy leaves from the infected ones. The k-means clustering method was utilized to obtain the initial parameters and the fuzzy “if-then” rules. Best estimation rates of 92.55% and 92.3% were achieved in training and testing the classifier with 8 clusters. Results showed that drought stress had an adverse effect on the classification of healthy leaves. More healthy leaves under drought stress condition were classified as infected causing PPV and Specificity index values to decrease, accordingly. Image acquisition in the dark had no significant effect on the classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.