Abstract

For memristive crossbar arrays, currently, no high-level design validation and early space exploration tools exist in the literature. Such tools are essential to quickly verify the design functionality as well as compare design alternatives in terms of power and performance. In this work, we propose a VHDL-based framework that enables us to quickly perform behavioral simulation as well as estimate dynamic energy consumption and speed of any large memristive crossbar array. We propose a high-level (VHDL) model of a memristor based on which crossbar architectures can be modeled. The individual memristor model is embedded with power and delay numbers obtained from a detailed memristor model. We demonstrate the framework for MAGIC-style memristive crossbars. We validate the framework against detailed Verilog-A based model on fifteen combinational benchmarks. For the single row model, we obtained 153x simulation speedup over HSPICE, average estimation errors of 6.64% and 0% for dynamic energy consumption and cycle-time, respectively. For the transpose model, we obtained average estimation errors of 5.51% and 10.90% for dynamic energy consumption and cycle-time, respectively. We also extend our framework to support another prominent logic style and validate through a case study. The proposed framework can be easily extended to other emerging technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.