Abstract

SUMMARYHyperpolarizing and inhibitory GABA regulates “critical periods” for plasticity in sensory cortices. Here, we examine the role of early, depolarizing GABA in controlling plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical period plasticity in visual cortical circuits, without affecting overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, down-regulation of BDNF expression, and reduced density of extracellular matrix-perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.