Abstract

Aims/hypothesisGenetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available.MethodsWe used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry. Additionally, measurements of intra-islet blood flow were performed using microsphere injections. We also assessed immune cell infiltration, cytokine expression in islets (by immunohistochemistry and qPCR), as well as islet Glut2 expression and ATP/ADP ratio to determine effects on glucose uptake and metabolism in beta cells.ResultsDRLyp/Lyp rats were normoglycaemic and without traces of immune cell infiltrates. However, IVGTTs revealed a significant decrease in the acute insulin response to glucose compared with control rats (1685.3 ± 121.3 vs 633.3 ± 148.7; p < 0.0001). In agreement, insulin secretion was severely perturbed in isolated islets, and both first- and second-phase insulin release were lowered compared with control rats, while glucagon secretion was similar in both groups. Interestingly, after 5–7 days of culture of islets from DRLyp/Lyp rats in normal media, glucose-stimulated insulin secretion (GSIS) was improved; although, a significant decrease in GSIS was still evident compared with islets from control rats at this time (7393.9 ± 1593.7 vs 4416.8 ± 1230.5 pg islet−1 h−1; p < 0.0001). Compared with controls, OPT of whole pancreas from DRLyp/Lyp rats revealed significant reductions in medium (4.1 × 109 ± 9.5 × 107 vs 3.8 × 109 ± 5.8 × 107 μm3; p = 0.044) and small sized islets (1.6 × 109 ± 5.1 × 107 vs 1.4 × 109 ± 4.5 × 107 μm3; p = 0.035). Finally, we found lower intra-islet blood perfusion in vivo (113.1 ± 16.8 vs 76.9 ± 11.8 μl min−1 [g pancreas]−1; p = 0.023) and alterations in the beta cell ATP/ADP ratio in DRLyp/Lyp rats vs control rats.Conclusions/interpretationThe present study identifies a deterioration of beta cell function and mass, and intra-islet blood flow that precedes insulitis and diabetes development in animals prone to autoimmune type 1 diabetes. These underlying changes in islet function may be previously unrecognised factors of importance in type 1 diabetes development.

Highlights

  • Type 1 diabetes is associated with the immune-mediated destruction of islet beta cells

  • The present study demonstrates that glucose-stimulated insulin secretion (GSIS) is perturbed in the DRLyp/Lyp rat as compared with diabetes-resistant

  • We observed a significant reduction in insulin secretion both in vivo and in vitro in isolated islets from DRLyp/Lyp rats

Read more

Summary

Introduction

Type 1 diabetes is associated with the immune-mediated destruction of islet beta cells. The BioBreeding (BB; LEW.1WR1) rat acts as a model of type 1 diabetes, whereby type 1 diabetes is suggested to originate from selective autoimmune destruction of beta cells [5]. The major histocompatibility complex holds genetic factors that predict disease in this model [6, 7]. This explains some, but not all, of the inherited predisposition to type 1 diabetes. Depletion of the ART2.1+ T cells in diabetes-resistant BB rats induces type 1 diabetes, suggesting that loss of regulatory T cells is associated with insulitis and type 1 diabetes [10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call