Abstract

Ku70 and Ku86, multifunctional DNA repair proteins, bind to broken DNA ends, including double-strand breaks, and trigger a DNA repair pathway. To investigate the involvement of these proteins in DNA fragmentation after ischemia/reperfusion, Ku protein expression was examined before and after transient focal cerebral ischemia (FCI) in mice. Adult male CD-1 mice were subjected to 60 minutes of FCI by intraluminal suture blockade of the middle cerebral artery. Ku protein expression was studied by immunohistochemistry and Western blot analysis. DNA fragmentation was evaluated by gel electrophoresis and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The spatial relationship between Ku expression and DNA fragmentation was examined by double labeling with Ku and TUNEL after reperfusion. Immunohistochemistry showed constitutive expression of Ku proteins in control brains. The number of Ku-expressing cells was decreased in the entire middle cerebral artery territory as early as 4 hours after reperfusion and remained reduced until 24 hours. Western blot analyses confirmed the significant reduction of these proteins (59.4% and 57.7% reduction in optical density at 4 hours of reperfusion from the normal level of Ku70 and Ku86 bands, respectively; P<0.001). DNA gel electrophoresis demonstrated DNA laddering 24 hours after reperfusion, but not at 4 hours. Double staining with Ku and TUNEL showed a concomitant loss of Ku immunoreactivity and TUNEL-positive staining. These results suggest that the early reduction of Ku proteins and the loss of defense against DNA damage may underlie the mechanism of DNA fragmentation after FCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call