Abstract
Spontaneous release of neurotransmitter has been demonstrated in various types of synapses. Its physiological significance, however, is still unknown. In nerve-muscle cultures of embryonic Xenopus laevis, we observed that acetylcholine, which is released spontaneously at the synaptic terminal, caused frequent twitches of muscle cells. These muscle cells developed cross-striations earlier than neighboring non-twitching cells. This effect of innervation was unaffected by tetrodotoxin but was blocked by alpha-bungarotoxin. Repeated iontophoretic application of acetylcholine or KCl to muscle cells caused twitches and also accelerated the formation of cross-striations. Thus twitching apparently promotes lateral alignment of myofibrils. It is also known that myosin synthesis is higher in twitching muscle cells. Therefore, successfully innervated twitching muscle cells may have an advantage for faster differentiation over neighboring non-twitching muscle cells. We suggest that spontaneously released transmitter may serve as a mediator for trophic interaction at forming synapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.