Abstract

ABSTRACTFollowing the amalgamation of the Siberian and North China Cratons, NE China, as part of the Central Asian Orogenic Belt (CAOB), underwent Late Mesozoic lithospheric extension that was associated with volcanic activity. The Songliao Basin is the most important rift structure formed during these processes and contains voluminous volcanic rocks interlayered with sedimentary infill. Mafic-to-intermediate lavas are associated with felsic ones. This study focusses on the geochemical compositions of the less-widespread Early Cretaceous mafic-to-intermediate lavas in the Songliao Basin and compares them with the more abundant felsic rocks. Two mafic-to-intermediate magma series, one with alkaline and the other with sub-alkaline affinity, were identified. High MgO and Cr contents, low Th/Nb and La/Nb ratios, and variable but depleted Nd isotope compositions indicate that both magma suites were most likely formed by the melting of enriched upper mantle sources. Sub-alkaline mafic-to-intermediate rocks and I-type rhyolites define a co-genetic magma series. This rock suite was produced by the melting of subduction-modified lithospheric mantle and subsequent magma evolution as well as crustal melting during lithospheric extension. Alkaline mafic-to-intermediate rocks and A-type rhyolites form another co-genetic magma suite that was produced under within-plate conditions from an OIB-type mantle source, supposed to be the heterogeneous shallow asthenosphere and/or the lower lithosphere. Decompression partial melting of this mantle source requires a relatively thin lithosphere. The development of alkaline mafic rocks and A-type rhyolites as typical bimodal volcanic assemblage reflects that lithospheric thinning below the Songliao Basin reached its maximum, whereas basin rifting terminated afterwards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.