Abstract

IntroductionThe aim of the study was to evaluate and compare the microcirculatory perfusion during experimental sepsis in different potentially available parts of the body, such as sublingual mucosa, conjunctiva of the eye, and mucosa of jejunum and rectum.MethodsPigs were randomly assigned to sepsis (n = 9) and sham (n = 4) groups. The sepsis group received a fixed dose of live Escherichia coli infusion over a 1-hour period (1.8 × 109/kg colony-forming units). Animals were observed 5 hours after the start of E. coli infusion. In addition to systemic hemodynamic assessment, we performed conjunctival, sublingual, jejunal, and rectal evaluation of microcirculation by using Sidestream Dark Field (SDF) videomicroscopy at the same time points: at baseline, and at 3 and 5 hours after the start of live E. coli infusion. Assessment of microcirculatory parameters of convective oxygen transport (microvascular flow index (MFI) and proportion of perfused vessels (PPV)), and diffusion distance (perfused vessel density (PVD) and total vessel density (TVD)) was done by using a semiquantitative method.ResultsInfusion of E. coli resulted in a hypodynamic state of sepsis associated with low cardiac output and increased systemic vascular resistance despite fluid administration. Significant decreases in MFI and PPV of small vessels were observed in sublingual, conjunctival, jejunal, and rectal locations 3 and 5 hours after the start of E. coli infusion in comparison with baseline variables. Correlation between sublingual and conjunctival (r = 0.80; P = 0.036), sublingual and jejunal (r = 0.80; P = 0.044), and sublingual and rectal (r = 0.79; P = 0.03) MFI was observed 3 hours after onset of sepsis. However, this strong correlation between the sublingual and other regions disappeared 5 hours after the start of E. coli infusion. Overall, the sublingual mucosa exhibited the most-pronounced alterations of microcirculatory flow in comparison with conjunctival, jejunal, and rectal microvasculature (P < 0.05).ConclusionsIn this pig model, a time-dependent correlation exists between sublingual and microvascular beds during the course of a hypodynamic state of sepsis.

Highlights

  • The aim of the study was to evaluate and compare the microcirculatory perfusion during experimental sepsis in different potentially available parts of the body, such as sublingual mucosa, conjunctiva of the eye, and mucosa of jejunum and rectum

  • The aim of our study was to evaluate the microcirculatory perfusion of potentially accessible parts of the body, such as the sublingual, conjunctival, jejunal, and rectal mucosa, at the same time points, and to establish their correlation over time during experimental sepsis

  • In this early hypodynamic sepsis model, alterations of microcirculation were observed in four locations during various time points with Sidestream Dark Field (SDF) videomicroscopy

Read more

Summary

Introduction

The aim of the study was to evaluate and compare the microcirculatory perfusion during experimental sepsis in different potentially available parts of the body, such as sublingual mucosa, conjunctiva of the eye, and mucosa of jejunum and rectum. Sepsis is a highly dynamic, acute illness with a relatively high risk for progression to septic shock, organ failure, and death [2], despite adequate infection control and aggressive resuscitation [3]. In this setting, alterations in the microcirculation can still be present, even if the systemic hemodynamic is optimized [4,5]. No studies have investigated the conjunctival microcirculation and its correlation with microcirculatory changes in the sublingual location during sepsis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.