Abstract
BackgroundA central objective in the field of neurobiology is to understand the developmental plasticity of neurons. The pursuit of this objective has revealed the presence of critical periods in neural development. Here, critical periods are defined as developmental time windows during which neural remodeling can take place; outside of these times neural plasticity is reduced. We have taken advantage of transgenic technology at the Drosophila melanogaster neuromuscular junction (NMJ) to investigate developmental plasticity and critical period determination of an identifiable nerve terminal.ResultsUsing temperature-dependent Gal80 control of transgene expression, we regulated the expression of dNSF2E/Q, a dominant-negative version of the Drosophila NSF2 gene, by shifting developing embryos and larvae between permissive and restrictive temperatures. dNSF2E/Q reduces synaptic strength and causes tremendous overgrowth of the neuromuscular junctions. We therefore measured synaptic transmission and synaptic morphology in two temperature-shift paradigms. Our data show that both physiological and morphological development is susceptible to dNSF2E/Q perturbation within the first two days.ConclusionOur data support the view that individual motor neurons in Drosophila larvae possess a critical window for synapse development in the first one to two days of life and that the time period for morphological and physiological plasticity are not identical. These studies open the door to further molecular genetic analysis of critical periods of synaptic development.
Highlights
A central objective in the field of neurobiology is to understand the developmental plasticity of neurons
We have previously shown that expression of Upstream Activation Sequence (UAS)-dNSF2E/Q causes neuromuscular junction (NMJ) overgrowth [18]; we sought to establish that
We predicted that when Gal80ts; elav- Gal4::UAS-dNSF2E/Q larvae are raised at room temperature Gal80ts should repress Gal4 and the NMJs should appear normal, while if larvae are raised at 30°C, Gal80ts is not active and Gal4 is active, and the dNSF2E/Q
Summary
A central objective in the field of neurobiology is to understand the developmental plasticity of neurons The pursuit of this objective has revealed the presence of critical periods in neural development. As the field of neuroscience has advanced it has become increasingly well understood that many neural circuits of the brain have non-linear developmental profiles; that is, there are distinct time windows during which the effects of activity on development are strong and long lasting [1]. These times are known as critical periods in development. While progress is being made to understand critical period phenomena as they pertain to complex vertebrate systems, the present study was undertaken to investigate developmental plasticity and critical period determination at single synaptic connections of identifiable motor neurons in the model genetic system Drosophila melanogaster
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.