Abstract

<p>The Orbiting Carbon Observatory-3 (OCO-3) was successfully launched on May 4, 2019 from Kennedy Space Center via a Space-X Falcon 9. One week later, the instrument was installed as an external payload on the International Space Station (ISS). OCO-3 extends NASA’s study of carbon and measures the dry-air mole fraction of column carbon dioxide (XCO2) in the Earth’s atmosphere from space.</p><p>These space-based measurements are compared to ground-based observations from the Total Carbon Column Observing Network (TCCON). TCCON is a global network of high-resolution ground-based Fourier Transform Spectrometers that records spectra of the sun in the near-infrared spectral region. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2 are retrieved. TCCON data are tied to the WMO scale and serve as the link between calibrated surface in situ measurements and OCO-3 measurements.</p><p>OCO-3’s agile 2-D pointing mirror assembly (PMA) allows the instrument to stare at a TCCON station as it passes overhead - providing information about the quality, biases, and errors in the OCO-3 data. Here, we show early comparisons between the OCO-3 XCO2 dataset collected during target mode observations and coincident TCCON measurements and discuss site-dependent biases and its potential origins.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call