Abstract
High-frequency cortical activity in humans and animals has been linked to a wide variety of higher cognitive processes. This research suggests that specific changes in neuronal synchrony occur during cognitive processing, distinguished by emergence of fast oscillations in the gamma frequency range. To determine whether the development of high-frequency brain oscillations can be related to the development of cognitive abilities, we studied the power spectra of resting EEG in children 16, 24 and 36 months of age. Individual differences in the distribution of frontal gamma power during rest were highly correlated with concurrent language and cognitive skills at all ages. Gamma power was also associated with attention measures; children who were observed as having better inhibitory control and more mature attention shifting abilities had higher gamma power density functions. We included a group of children with a family history of language impairment (FH+) and thus at higher risk for language disorders. FH+ children, as a group, showed consistently lower gamma over frontal regions than the well-matched FH− controls with no such family history (FH−). We suggest that the emergence of high-frequency neural synchrony may be critical for cognitive and linguistic development, and that children at risk for language impairments may lag in this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.