Abstract

We did a prospective study to study the efficiency of Short Segment Posterior Instrumentation using a Universal Spine System with incorporation of the fractured vertebra in post-traumatic thoracic and lumbar spine fractures. 25 cases in the age group of I5-50 years with thoracic and lumbar spine fractures were included in the study. The operative decision was made on the basis of instability of spine fractures with or without neurological deficit. Patients were followed up for an average period of twelve months, reporting for assessment at 3-monthly intervals. The final result was analyzed on the basis of neurological recovery as per Frankel's Grading, spine stability as per kyphotic angle by Cobb's method, vertebral body height and complications. Post-operatively at the final follow-up visit, 36% patients had Frankel's grade E neurological status. The mean sagittal plane kyphosis pre-operatively was 31.16°, which reduced to 21.52° post-operatively, which represents 30.93% reduction. Mean anterior body compression was 38.6°, which decreased to 23.4° post-operatively, corresponding to 15% increase. 1. Although conventional short segment posterior fixation (SSPF) has become an increasingly popular method of treatment of thoracolumbar burst fractures, providing the advantage of incorporating fewer motion segments in the fixation, a review of literature demonstrated that SSPF led to 9-55% incidence of implant failure and long term loss of kyphosis correction. 2. Short segment posterior fixation with pedicle fixation at the level of the fractured vertebra (short same-segment fixation) provides more biomechanical stability than traditional SSPF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call