Abstract

We examined neural activity mediating semantic and syntactic processing in 27 preschool-age children who stutter (CWS) and 27 preschool-age children who do not stutter (CWNS) matched for age, nonverbal IQ and language abilities. All participants displayed language abilities and nonverbal IQ within the normal range. Event-related brain potentials (ERPs) were elicited while participants watched a cartoon video and heard naturally spoken sentences that were either correct or contained semantic or syntactic (phrase structure) violations. ERPs in CWS, compared to CWNS, were characterized by longer N400 peak latencies elicited by semantic processing. In the CWS, syntactic violations elicited greater negative amplitudes for the early time window (150–350ms) over medial sites compared to CWNS. Additionally, the amplitude of the P600 elicited by syntactic violations relative to control words was significant over the left hemisphere for the CWNS but showed the reverse pattern in CWS, a robust effect only over the right hemisphere. Both groups of preschoolage children demonstrated marked and differential effects for neural processes elicited by semantic and phrase structure violations; however, a significant proportion of young CWS exhibit differences in the neural functions mediating language processing compared to CWNS despite normal language abilities. These results are the first to show that differences in event-related brain potentials reflecting language processing occur as early as the preschool years in CWS and provide the first evidence that atypical lateralization of hemispheric speech/language functions previously observed in the brains of adults who stutter begin to emerge near the onset of developmental stuttering.Educational objectives: The reader will be able to: (1) describe the role of language processing in current theoretical models of developmental stuttering; (2) summarize current evidence regarding language processing differences between individuals who do and do not stutter; (3) describe typical changes in neural indices of semantic and syntactic processing across development; (4) discuss the potential implications of the current findings in relation to theories of developmental stuttering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call