Abstract

End pit lakes (EPLs) have been proposed as a method for the long-term reclamation of process water and fluid fine tailings (FFT) produced from surface mining within the Canadian oil sands. These waste products contain elevated concentrations of dissolved organics, metals, and salts which reduce surface water quality and are toxic to aquatic organisms. This study measured the concentrations of inorganic constituents in surface water from the industry's first large-scale EPL over the course of a three-year period (2014–2016). The toxicological risk was subsequently assessed to identify constituents of concern that may impair surface water quality necessary for the development of a functional aquatic ecosystem or for release to the surrounding environment. Changes in surface water concentrations over the three-year period were strongly correlated with hydrological processes occurring within the lake: advective-diffusive chemical influx from FFT pore water to the overlying surface water was offset by efflux via continuous manual pumping (freshwater in, process water out). These processes resulted in a net dilution effect of approximately 5–10% per year, however, a significant chemical mass is expected to persist within the underlying FFT. Elevated salinity (as Na+, Cl-, HCO3-) and concentrations of boron and nickel were predicted to pose very high toxicological risk to aquatic organisms. Despite these risks, the discovery of wild Daphnia pulex in the August 2016 sample suggested that surface water quality was sufficient to support populations of certain salt-tolerant zooplankton and primary producers. However, the time required for development into a robust aquatic ecosystem remains unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.