Abstract

Simple SummaryIn patients with advanced hepatocellular carcinoma, systemic therapy is recommended by most treatment guidelines. Sorafenib and lenvatinib are both 1st-line treatments for inoperable advanced HCC. Regorafenib, cabozantinib, and ramucirumab have been approved as 2nd-line targeted therapy in patients who show progression or do not tolerate sorafenib. However, there is a lack of imaging biomarkers for predicting survival outcomes in patients receiving 2nd-line targeted therapy after sorafenib failure. In this paper, we try to predict survival outcomes via early changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted therapy following sorafenib failure, taking data from two different prospective clinical trials. We found that an early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict survival outcomes in these participants. For the further clinical development of anti-angiogenic therapies, optimal participant selection with predictive biomarkers, such as DCE-MRI, is essential in order to improve treatment outcomes.In this paper, our main objective was to predict survival outcomes using DCE-MRI biomarkers in patients with advanced hepatocellular carcinoma (HCC) after progression from 1st-line sorafenib treatment in two prospective phase II trials. This study included 74 participants (men/women = 64/10, mean age 60 ± 11.8 years) with advanced HCC who received 2nd-line targeted therapy (n = 41 with lenalidomide in one clinical trial; n = 33 with axitinib in another clinical trial) after sorafenib failure from two prospective phase II studies. Among them, all patients underwent DCE-MRI at baseline, and on days 3 and 14 of treatment. The relative changes (Δ) in the DCE-MRI parameters, including ΔPeak, ΔAUC, and ΔKtrans, were derived from the largest hepatic tumor. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). The Cox model was used to investigate the associations of the clinical variables and DCE-MRI biomarkers with progression-free survival (PFS) and overall survival (OS). The objective response rate (ORR) was 10.8% (8/74) and the disease control rate (DCR) was 58.1% (43/74). The median PFS and OS values were 1.9 and 7.8 months, respectively. On day 3 (D3), participants with high reductions in ΔPeak_D3 (hazard ratio (HR) 0.4, 95% confidence interval (CI) 0.17–0.93, p = 0.017) or ΔAUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better PFS. On day 14, participants with high reductions in ΔPeak_D14 (HR 0.51, 95% CI 0.26–1.01, p = 0.032), ΔAUC_D14 (HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ΔKtrans_D14 (HR 0.26, 95% CI 0.12–0.56, p < 0.001) had a higher PFS than those with lower reduction values. In addition, high reductions in ΔAUC_D14 (HR 0.53, 95% CI 0.32–0.9, p = 0.016) or ΔKtrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated with a better OS. Among the clinical variables, ORR was associated with both PFS (p = 0.001) and OS (p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089). Cox multivariable analysis revealed that ΔKtrans_D14 (p = 0.002) remained an independent predictor of PFS after controlling for ORR and DCR. An early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict favorable survival outcomes in participants with HCC receiving 2nd-line targeted therapy after sorafenib failure.

Highlights

  • Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the fourth leading cause of cancer-related death worldwide [1]

  • We found that an early reduction in tumor perfusion detected by Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarkers, especially on day 14, may predict survival outcomes in these participants

  • Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive method that can be used for detecting tumor blood flow and vascular permeability changes

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the fourth leading cause of cancer-related death worldwide [1]. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive method that can be used for detecting tumor blood flow and vascular permeability changes This method has been actively investigated in cancer clinical trials to explore its clinical potential for monitoring the efficacy of antiangiogenic therapies [14,15,16,17]. Previous studies have shown that DCE-MRI biomarkers, such as Peak and Ktrans (volume transfer constant), appear to be capable of predicting therapeutic efficacy in HCC patients receiving anti-angiogenic targeted therapy [18,19,20]. The purpose of this study was to predict survival outcomes via early changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted therapy following sorafenib failure, taking data from two different prospective clinical trials

Materials and Methods
MRI Protocol
Image Analysis
Comparison of Changes in DCE-MRI Biomarkers between Treatment Groups
Findings
Factors Associated with PFS and OS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call