Abstract

Existing geochronological and geochemical data for the Early Carboniferous magmatic rocks in the eastern Tianshan, Xinjiang, have been interpreted in a variety of theories regarding petrogenesis and geodynamic setting. The proposed settings include rift, back-arc basin, passive continental margin, island arc, ridge subduction, and post-collisional environment. To evaluate these possibilities, we present new SHRIMP zircon U–Pb geochronology and geochemical data, whole-rock geochemical, Hf isotope, and S isotope data for tonalitic rocks and ores associated with the Tuwu porphyry copper deposit located in the center of the late Paleozoic Dananhu–Tousuquan arc, eastern Tianshan. SHRIMP zircon U–Pb dating indicates that the magmatic activity and thus associated copper mineralization occurred ca.332Ma. The tonalitic rocks are calc-alkaline granites with A/CNK values ranging from 1.16 to 1.58; are enriched in K, Rb, Sr, and Ba; and are markedly depleted in Nb, Ta, Ti, and Th. They show geochemical affinities similar to adakites, with high Sr, Al2O3, and Na2O contents and La/Yb ratios; low Y and Yb contents; and slight positive Eu anomalies. In situ Hf isotopic analyses of zircons yielded positive initial εHf(t) values ranging from 6.9 to 17.2. The δ34S values of the ore sulfides range from −3.0‰ to +1.7‰, reflecting a deep sulfur source. Our results indicate that the paleo-Tianshan oceanic slab was being simultaneously subducted northward beneath the Dananhu–Tousuquan arc, and southward beneath the Aqishan–Yamansu arc during the Early Carboniferous. The Tuwu adakitic tonalitic rocks were derived from the partial melting of the subducted paleo-Tianshan oceanic slab, which was subsequently hybridized by mantle wedge peridotites. The slab-derived magmas have considerably high copper contents and are highly oxidized, thus leading to porphyry copper mineralization. Such Early Carboniferous tonalitic rocks that are widespread in the eastern Tianshan define a province with high potential for copper mineralization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.