Abstract

Effective risk assessment in early breast cancer is essential for informed clinical decision-making, yet consensus on defining risk categories remains challenging. This paper explores evolving approaches in risk stratification, encompassing histopathological, immunohistochemical, and molecular biomarkers alongside cutting-edge artificial intelligence (AI) techniques. Leveraging machine learning, deep learning, and convolutional neural networks, AI is reshaping predictive algorithms for recurrence risk, thereby revolutionizing diagnostic accuracy and treatment planning. Beyond detection, AI applications extend to histological subtyping, grading, lymph node assessment, and molecular feature identification, fostering personalized therapy decisions. With rising cancer rates, it is crucial to implement AI to accelerate breakthroughs in clinical practice, benefiting both patients and healthcare providers. However, it is important to recognize that while AI offers powerful automation and analysis tools, it lacks the nuanced understanding, clinical context, and ethical considerations inherent to human pathologists in patient care. Hence, the successful integration of AI into clinical practice demands collaborative efforts between medical experts and computational pathologists to optimize patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.