Abstract

BackgroundThis study evaluated the association between the results of immediate brain computed tomography (CT) scans and outcome in patients who were treated with therapeutic hypothermia after cardiac arrest. The evaluation was based on the changes in the ratio of gray matter to white matter.MethodsA total of 167 patients who were successfully resuscitated after cardiac arrest from March 2009 to December 2011 were included in this study. We selected 51 patients who received a brain CT scan within 1 hour after the return of spontaneous circulation (ROSC) and who had been treated with therapeutic hypothermia. Circular regions of measurement (10 mm2) were placed over regions of interest (ROIs), and the average attenuations in gray matter (GM) and white matter (WM) were recorded in the basal ganglia, at the level of the centrum semiovale and in the high convexity area. Three GM-to-WM ratios (GWRs) were calculated: one for the basal ganglia, one for the cerebrum and the average of the two. The neurological outcomes were assessed using the Cerebral Performance Category (CPC) scale at the time of hospital discharge, and a good neurological outcome was defined as a CPC score of 1 or 2.ResultsThe average GWR was the strongest predictor of poor neurological outcome as determined using receiver operating characteristic curves (basal ganglia area under the curve (AUC) = 0.716; cerebrum AUC = 0.685; average AUC = 0.747). An average GWR < 1.14 predicted a poor neurological outcome with a sensitivity of 13.3% (95% confidence interval (CI) 3.8-30.7), a specificity of 100% (95% CI 83.9-100), a positive predictive value of 100% (95% CI 2.5-100), and a negative predictive value of 44.7% (CI 28.9-58.9).ConclusionsOur study demonstrated that low GWRs in the immediate brain CT scans of patients treated with therapeutic hypothermia after ROSC were associated with poor neurological outcomes. Immediate brain CT scans could help predict outcome after cardiac arrest.

Highlights

  • This study evaluated the association between the results of immediate brain computed tomography (CT) scans and outcome in patients who were treated with therapeutic hypothermia after cardiac arrest

  • We evaluated the association between the CT signs and the outcomes of patients treated with therapeutic hypothermia after cardiac arrest

  • This evaluation was based on the decrease in the gray matter (GM) to white matter (WM) ratio (GWR) obtained from a brain CT scan performed within 1 hour after return of spontaneous circulation (ROSC)

Read more

Summary

Methods

A total of 167 patients who were successfully resuscitated after cardiac arrest from March 2009 to December 2011 were included in this study. We selected 51 patients who received a brain CT scan within 1 hour after the return of spontaneous circulation (ROSC) and who had been treated with therapeutic hypothermia. Circular regions of measurement (10 mm2) were placed over regions of interest (ROIs), and the average attenuations in gray matter (GM) and white matter (WM) were recorded in the basal ganglia, at the level of the centrum semiovale and in the high convexity area. Three GM-to-WM ratios (GWRs) were calculated: one for the basal ganglia, one for the cerebrum and the average of the two. The neurological outcomes were assessed using the Cerebral Performance Category (CPC) scale at the time of hospital discharge, and a good neurological outcome was defined as a CPC score of 1 or 2

Results
Conclusions
Background
Materials and methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.