Abstract

We examined the initial molecular mechanisms by which cells nonselectively internalize extracellular solutes in response to insulin. Insulin-stimulated fluid phase endocytosis (FPE) was examined in responsive cells, and the roles of the insulin receptor, insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3'-kinase (PI 3'-kinase), Ras, and mitogen-activated protein kinase kinase (MEK) were assessed. Active insulin receptors were essential, as demonstrated by the stimulation of FPE by insulin in HIRc-B cells (Rat-1 cells expressing 1.2 x 10(6) normal insulin receptors/cell) but not in untransfected Rat-1 cells or in Rat-1 cells expressing the inactive A/K1018 receptor. IRS-1 expression augmented insulin-stimulated FPE, as assessed in 32D cells, a hematopoietic precursor cell line lacking endogenous IRS-1. Insulin-stimulated FPE was inhibited in mouse brown adipose tissue (BAT) cells expressing the 17N dominant negative mutant Ras and was augmented in cells expressing wild-type Ras. The MEK inhibitor PD-98059 had little effect on insulin-stimulated FPE in BAT cells. In 32D cells, but not in HIRc-B and BAT cells, insulin-stimulated FPE was inhibited by 10 nM wortmannin, an inhibitor of PI 3'-kinase. The results indicate that the insulin receptor, IRS-1, Ras, and, perhaps in certain cell types, PI 3'-kinase are involved in mediating insulin-stimulated FPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.