Abstract

In chronic myeloid leukemia (CML), early treatment prediction is important to identify patients with inferior overall outcomes. We examined the feasibility of using reductions in BCR-ABL1 transcript levels after 1 month of tyrosine kinase inhibitor (TKI) treatment to predict therapy response. Fifty-two first-line TKI-treated CML patients were included (imatinib n = 26, dasatinib n = 21, nilotinib n = 5), and BCR-ABL1 transcript levels were measured at diagnosis (dg) and 1, 3, 6, 12, 18, 24, and 36 months. The fold change of the BCR-ABL1 transcripts at 1 month compared to initial BCR-ABL1 transcript levels was used to indicate early therapy response. In our cohort, 21% of patients had no decrease in BCR-ABL1 transcript levels after 1 month and were classified as poor responders. Surprisingly, these patients had lower BCR-ABL1 transcript levels at dg compared to responders (31% vs. 48%, p = 0.0083). Poor responders also significantly more often had enlarged spleen (55% vs. 15%; p<0.01) and a higher percentage of Ph+ CD34+CD38- cells in the bone marrow (91% vs. 75%, p<0.05). The major molecular response rates were inferior in the poor responders (at 12m 18% vs. 64%, p<0.01; 18m 27% vs. 75%, p<0.01; 24m 55% vs. 87%, p<0.01). In conclusion, early treatment response analysis defines a biologically distinct patient subgroup with inferior long-term outcomes.

Highlights

  • Chronic myeloid leukemia (CML) is caused by the Philadelphia chromosome (Ph), which induces the formation of the BCR-ABL1 fusion protein

  • Twenty-one percent of patients had no decline in BCR-ABL1 transcript levels during the first month of tyrosine kinase inhibitor (TKI) therapy

  • When we analyzed Ph positive (Ph+) putative leukemic stem cells (Ph+ CD34 positive (CD34+)CD38-) in the bone marrow (BM) at dg, we found that the proportion out of all CD34+CD38- cells was significantly higher in poor responders than in responders (p

Read more

Summary

Introduction

Chronic myeloid leukemia (CML) is caused by the Philadelphia chromosome (Ph), which induces the formation of the BCR-ABL1 fusion protein. It has constant tyrosine kinase activity leading to uncontrolled cell proliferation.[1,2,3] Tyrosine kinase inhibitors (TKIs) blocking the PLOS ONE | DOI:10.1371/journal.pone.0171041. BCR-ABL1 Transcript Decline in CML en/); Otto A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.