Abstract

One of the primary pathologies associated with hypertension is a complex autonomic dysfunction with evidence of sympathetic hyperactivity and/or vagal withdrawal. We investigated the possibility for early detection of essential hypertension on the basis of the analysis of heart rate (HR) and blood pressure fluctuations, which reflect autonomic control. Young adult normotensive offspring of one hypertensive parent (KHT; n = 12) and normotensive offspring of two normotensive parents (YN; n = 14) participated in this study. ECG, continuous blood pressure, and respiration were recorded during steady-state conditions and under various autonomic challenges. Time-frequency decomposition of these signals was performed with the use of a continuous wavelet transform. The use of the wavelet transform enables the extension of typical HR variability analysis to non-steady-state conditions. This time-dependent spectral analysis of HR allows time-dependent quantification of different spectral components reflecting the sympathetic and parasympathetic activity during rapid transitions, such as an active change in posture (CP). During an active CP from the supine to standing position, KHT demonstrated a significantly greater increase in the low-frequency fluctuations in HR than YN, indicating enhanced sympathetic involvement in the HR response to CP, and a reduced alpha-index, indicating decreased baroreceptor sensitivity. On recovery from handgrip, vagal reactivation was more sluggish in KHT. These results indicate the early existence of malfunctions in both branches of autonomic control in individuals at increased risk of hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call