Abstract
The aim was to assess the effect of irradiation on intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells of vessels in mouse urinary bladder and to compare endothelial ICAM-1 expression with changes in bladder function (storage capacity) during the early and late radiation response phases. Female C3H/Neu mice were irradiated with doses of either 20 or 0 Gy. For assessment of ICAM-1 expression, which was measured by the intensity of the immunohistochemical staining signal in bladder endothelium, an arbitrary semiquantitative score (0 – 3) was applied. Bladder storage function was assessed by transurethral cystotonometry. A positive functional radiation response, defined as a reduction in bladder capacity by > 50%, between days 0 and 15 or 16 and 30 was found in 40 and 64% of the animals, respectively. A late functional response was observed in 71% of the animals sacrificed after day 180. Minor constitutive expression of ICAM-1 was observed in bladder endothelial cells. After irradiation, an increase in staining signal by day 2, with a maximum on day 4, and on days 16 – 28 was found, which preceded the functional radiation effects. A permanent increase in ICAM-1 staining signal was observed in the late phase on top of an age-related rise. ICAM-1 expression was significantly higher in animals with a positive late response on day 90, i.e. during the initial late phase. Irradiation induces significant early and chronic variations in ICAM-1 expression in bladder endothelium, which preceded the functional response. This suggests that endothelial ICAM-1 is involved in the pathogenesis of both the early and late phases of radiation-induced urinary bladder effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.