Abstract

BackgroundProgressive remodeling after myocardial infarction (MI) is a leading cause of morbidity and mortality. Recently, glucagon-like peptide (GLP)-1 was shown to have cardioprotective effects, but treatment with GLP-1 is limited by its short half-life. It is rapidly degraded by the enzyme dipeptidyl peptidase-4 (DPP-4), an enzyme which inhibits GLP-1 activity. We hypothesized that the DPP-4 inhibitor vildagliptin will increase levels of GLP-1 and may exert protective effects on cardiac function after MI.MethodsSprague-Dawley rats were either subjected to coronary ligation to induce MI and left ventricular (LV) remodeling, or sham operation. Parts of the rats with an MI were pre-treated for 2 days with the DPP-4 inhibitor vildagliptin (MI-Vildagliptin immediate, MI-VI, 15 mg/kg/day). The remainder of the rats was, three weeks after coronary artery ligation, subjected to treatment with DPP-4 inhibitor vildagliptin (MI-Vildagliptin Late, MI-VL) or control (MI). At 12 weeks, echocardiography and invasive hemodynamics were measured and molecular analysis and immunohistochemistry were performed.ResultsVildagliptin inhibited the DPP-4 enzymatic activity by almost 70% and increased active GLP-1 levels by about 3-fold in plasma in both treated groups (p < 0.05 vs. non-treated groups). Cardiac function (ejection fraction) was decreased in all 3 MI groups compared with Sham group (p < 0.05); treatment with vildagliptin, either early or late, did not reverse cardiac remodeling. ANP (atrial natriuretic peptide) and BNP (brain natriuretic peptide) mRNA levels were significantly increased in all 3 MI groups, but no significant reductions were observed in both vildagliptin groups. Vildagliptin also did not change cardiomyocyte size or capillary density after MI. No effects were detected on glucose level and body weight in the post-MI remodeling model.ConclusionVildagliptin increases the active GLP-1 level via inhibition of DPP-4, but it has no substantial protective effects on cardiac function in this well established long-term post-MI cardiac remodeling model.

Highlights

  • Glucagon-like peptide-1(GLP-1; 7-36 amide), which belongs to the proglucagon family of incretin peptides, is secreted by enteroendocrine L cells of the intestinal mucosa and released in response to food intake [1]

  • glucagon-like peptide (GLP)-1R deficient mice exhibit increased left ventricular (LV) thickness, impaired LV contractility and LV diastolic function compared with control mice [9]

  • A 72 hours infusion of GLP-1 in patients with acute myocardial infarction (MI) and an LV ejection fraction (LVEF) less than 40% resulted in significantly improved LVEF and improved regional and global wall motion scores, in association with a trend towards earlier hospital discharge [14]

Read more

Summary

Introduction

Glucagon-like peptide-1(GLP-1; 7-36 amide), which belongs to the proglucagon family of incretin peptides, is secreted by enteroendocrine L cells of the intestinal mucosa and released in response to food intake [1]. Administration of GLP-1 improves myocardial function and cardiac output in experimental models of cardiac injury or heart failure. GLP-1 increased cardiac output, and reduced LV end diastolic pressure, in association with improved myocardial insulin sensitivity and myocardial glucose uptake in dogs with rapid pacinginduced congestive heart failure [10]. Glucagon-like peptide (GLP)-1 was shown to have cardioprotective effects, but treatment with GLP-1 is limited by its short half-life. It is rapidly degraded by the enzyme dipeptidyl peptidase-4 (DPP-4), an enzyme which inhibits GLP-1 activity. We hypothesized that the DPP-4 inhibitor vildagliptin will increase levels of GLP-1 and may exert protective effects on cardiac function after MI

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call