Abstract

Immediately after wounding, bovine corneal endothelial cells develop a fast calcium wave that propagates from the wound border to the rest of the monolayer and extinguishes in approximately 5 minutes. One hour after wounding, a late, slow calcium wave (SCW) develops concomitantly to the depolarization of the plasma membrane potential of the border cells. The incorporation of inhibitors of the epithelial sodium channel and of the sodium-calcium exchanger produces inhibition of the membrane depolarization and the SCW, and diminishes the rate of wound healing. The L-type calcium channel blocker nimodipine does not have any effect on the SCW. The reversible inhibition of the fast calcium wave does not affect the SCW and only slightly decreases the velocity of healing. Our results suggest that the SCW is at least partially produced by the coupling of the epithelial sodium channel and the sodium-calcium exchanger functioning in reverse mode. They also suggest that the SCW may play a role in the overall healing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.