Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting cognitive and memory abilities and is believed to be linked to the formation and accumulation of neurotoxic aggregates of the Amyloid-β peptide (Aβ). In particular, it is the formation of soluble pre-fibrillar oligomers within the early stage of Aβ aggregation which is thought to represent a key step in the development of AD, thus underlining the interest in characterizing the aggregation process and the nature of these aggregates. In this context, fluorescence correlation spectroscopy (FCS) has emerged as a valuable alternative for the study of these systems in solution. Indeed, the use of FCS to study terminally labelled Aβ provides a means to detect changes in the size and concentration of initially monomeric Aβ samples by monitoring these fluorescently labelled species freely diffusing in solution with single-molecule resolution. Herein, we show how to employ FCS to study the early aggregation process of Aβ(1-42) and how this can be used to estimate the critical concentration for oligomer formation and to characterize the aggregates formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.