Abstract

High-performance cement-based materials, characterized by low water-to-cement (W/C) ratio and high cement content, are sensitive to early-age cracking because their autogenous shrinkage rate and magnitude are particularly high during this period. This article firstly presents experimental tools especially designed for the measurement of free and restrained autogenous shrinkage at early-age. Then, the results of a multi-parameter experimental study conducted on three different types of binder are analyzed. The physico-chemical deformations of cement pastes and mortars were measured from the very early-age up to several days in saturated and autogenous conditions to investigate the effects of binder, water-to-binder ratio, presence of aggregates and temperature on the driving-mechanisms leading to early-age autogenous cracking. Complementary tests such as hydration rate measurement and microscopic observations were also performed. Among the three binders used, the blast furnace slag cement shows higher chemical strain, for a given quantity of chemically-bound water, and higher early-age autogenous shrinkage. The presence of aggregates generates a local restraining effect of cement paste deformations, leading to the formation of microcracks in the surrounding cement paste. Ring test results reveal that the first through crack of cement pastes systematically appears for maximal internal stress values lower than the material tensile strength, estimated with three-point flexural tests. This phenomenon may be due to diffuse damage of the cementitious matrix, whose deformations are partially restrained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.