Abstract

Purpose To confirm the interest of 3-dimensional ultrashort echo-time (3D-UTE) sequences to assess morphologic aspects in normal and pathological Achilles entheses in a rat model of spondyloarthropathy (SpA) with histological correlations, in comparison with conventional RARE T2 Fat-Sat sequences, and, furthermore, to evaluate the feasibility of a 3D multiecho UTE sequence performed before and after the intravenous injection of ultrasmall superparamagnetic iron oxide (USPIO) particles to assess macrophagic involvement in the Achilles enthesis in the same rat model of SpA. Materials and Methods Fourteen rats underwent in vivo MRI of the ankle at 4.7 T, including a 3D RARE T2 Fat-Sat sequence and a 3D ultrashort echo-time (UTE) sequence for morphologic assessment at baseline and day 3 after induction of an SpA model, leading to Achilles enthesopathy in the left paw (right paw serving as a control). A 3D multiecho UTE sequence was also performed at day 3 before and then 24 (4 rats) and 48 (2 rats) hours after intravenous injection of USPIO. Visual analysis and signal intensity measurements of all images were performed at different locations of the Achilles enthesis and preinsertional area. Visual analysis and T2∗ measurements were performed before and after USPIO injection, on the 3D multiecho UTE sequence in the same locations. Normal and pathological values were compared by Wilcoxon signed-rank tests. MR findings were compared against histological data. Results 3D-UTE sequences enabled morphologic identification of the anterior fibrocartilage and posterior collagenic areas of the Achilles enthesis. Visual analysis and signal intensity measurements distinguished SpA-affected entheses from healthy ones at day 3 (P=0.02). After administration of USPIO, no differences in signals were detected. Similarly, both visual analysis and signal T2∗ measurements in the enthesis were unable to distinguish the SpA-affected tendons from healthy ones (P=0.914). Neither the normal anatomy of the enthesis nor its pathological pattern could be distinguished using the standard RARE sequence. Histology confirmed the absence of USPIO in Achilles entheses, despite marked signs of inflammation. Conclusion Unlike conventional RARE T2 Fat-Sat sequences, 3D-UTE sequences enable morphologic assessment of normal enthesis anatomy and early detection of abnormalities in pathological conditions. However, 3D multiecho UTE sequences combined with USPIO injections with T2∗ measurements were unable to detect macrophagic involvement in these pathological conditions.

Highlights

  • To con rm the interest of 3-dimensional ultrashort echo-time (3D-UTE) sequences to assess morphologic aspects in normal and pathological Achilles entheses in a rat model of spondyloarthropathy (SpA) with histological correlations, in comparison with conventional RARE T2 Fat-Sat sequences, and, to evaluate the feasibility of a 3D multiecho UTE sequence performed before and after the intravenous injection of ultrasmall superparamagnetic iron oxide (USPIO) particles to assess macrophagic involvement in the Achilles enthesis in the same rat model of SpA

  • Fourteen rats underwent in vivo MRI of the ankle at 4.7 T, including a 3D RARE T2 Fat-Sat sequence and a 3D ultrashort echo-time (UTE) sequence for morphologic assessment at baseline and day 3 after induction of an SpA model, leading to Achilles enthesopathy in the left paw

  • Following i.v. injection, USPIO is incorporated into macrophages via endocytosis. e uptake of USPIOs by phagocytic monocytes and macrophages provides an in vivo tool by which MRI can sensitize and monitor the involvement of macrophages in inflammatory processes, such as multiple sclerosis, stroke, brain tumors, nephropathies, and vulnerable plaques in the carotid artery [11,12,13]

Read more

Summary

Introduction

To con rm the interest of 3-dimensional ultrashort echo-time (3D-UTE) sequences to assess morphologic aspects in normal and pathological Achilles entheses in a rat model of spondyloarthropathy (SpA) with histological correlations, in comparison with conventional RARE T2 Fat-Sat sequences, and, to evaluate the feasibility of a 3D multiecho UTE sequence performed before and after the intravenous injection of ultrasmall superparamagnetic iron oxide (USPIO) particles to assess macrophagic involvement in the Achilles enthesis in the same rat model of SpA. Visual analysis and T2∗ measurements were performed before and after USPIO injection, on the 3D multiecho UTE sequence in the same locations. Unlike conventional RARE T2 Fat-Sat sequences, 3D-UTE sequences enable morphologic assessment of normal enthesis anatomy and early detection of abnormalities in pathological conditions.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call