Abstract
The rising intensity and frequency of extreme temperature events are caused due to climate change and are likely to affect the entire world. In this context, the Himalayas are reported to be very sensitive to changes in temperature extremes. In this study, we investigate the variability of temperature extremes over the Northwest Himalayas in the early 21st century (2000–2018). Here, we used 14 temperature indices recommended by ETCCDI (Expert Team on Climate Change Detection and Indices). The present study reveals the trends of extreme temperature indices on the spatial scale for the western part of the Northwest Himalayas. The 14 temperature indices were used to assess the behavior of extreme temperature trends with their significance. This study reports that the northwestern region of the study area has a cooling effect due to an increase in the trends of cold spells, cold days/nights, and frost days, while the southwestern region significantly shows the warming effects due to the increasing trends in warm spells, warm days/nights, and summer days. On the other hand, the eastern region of the study area shows mixed behavior, i.e., some places show warm effects while some reveal cold effects in the early 21st century. Overall, this study implies the northwestern parts have cooling trends while the southwestern and southeastern parts have warming trends during the early 21st century.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.