Abstract

The formation of dental caries is mainly caused by dietary habits and therefore, may contain information for dietary reconstructions of fossil hominids. This study investigates the caries lesion in the 12.5 Ma old type specimen of Dryopithecus carinthiacus Mottl 1957 (Primates, Hominidae) from St. Stefan (Austria). Potential food sources are identified on associated palynological data, which allow conclusions about food quality, sugar availability and the hominid metabolism during the Middle Miocene. Using micro computed tomography (μCT) and scanning electron microscopy (SEM) we provide a detailed analysis and characterization of the individuals’ caries type. Its lesion is compared with a dataset of 311 wild chimpanzees, indicating morphological and etiological differences in caries formation between both species. The affected molar of D. carinthiacus reveals features known from severe dental caries in humans: (1) Cavitation with steep walls and smooth surface; (2) Reparative dentine at the roof of the pulp chamber; (3) Sclerotic dentine below the cavitation; (4) Association with dental calculus and (5) Unilateral usage of the healthy right tooth row. Its advanced primary caries, initiating on the intact enamel surface, indicates a frequent intake of highly cariogenic sugar-rich fruits, which likely exceeds the frugivory of extant chimpanzees. This finding corresponds with the associated palynological record, which infers a habitat with nearly year-round supply (9–10 months/year) of high quality foods (>carbohydrates; < fibers). Our conclusions challenge the model of a step-wise increase in dietary quality during hominid evolution and support the uricase hypothesis, which discusses the hominid autapomorphy of a fructose-based fat accumulation for periods of starvation. This model receives further validation by the identification of soft-tissue preservation, interpreted as fossilized white adipose cells, in the articulated hominid skeleton of Oreopithecus bamboli from Italy.

Highlights

  • Dental caries is a prevalent disease in current societies, reflecting the oral health and dietary conditions of an individual

  • Examination with μCT, scanning electron microscopy (SEM) and stereomicroscopy revealed further morphologies known from extant human caries lesions: 1. Primary caries

  • The type of D. carinthiacus (LMK-Pal 5508) dates to the Early Sarmatian (Middle Miocene) at ~12.5 Ma, being the earliest known representative of the dryopithecine clade. This specimen shows the earliest record of primary dental caries and calculus in a hominid

Read more

Summary

Introduction

Dental caries is a prevalent disease in current societies, reflecting the oral health and dietary conditions of an individual. Scarce in the fossil record, its occurrence can give rare insights into the dietary preferences of extinct taxa [1]. We describe a considerably older caries lesion from the Middle Miocene stem-hominine Dryopithecus carinthiacus (Fig 1) from St. Stefan (Lavanttal Basin, Carinthia, Austria). It is the earliest documented caries disease in hominids dating back to the Early Sarmatian (Serravallian, late Middle Miocene) at 12.5 Ma. Its primary formation on the intact enamel surface indicates a highly cariogenic diet of D. carinthiacus, supposedly rich in sugar-rich fruits. Our results provide conclusions about the dryopithecine metabolism, supporting the uricase hypothesis [5, 6] and offering new insights into the dietary evolution of early hominids

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call