Abstract

While most mammalian tissue regeneration is limited, the Murphy Roths Large (MRL/MpJ) mouse has been identified to regenerate several tissues, including tendon. Recent studies have indicated that this regenerative response is innate to the tendon tissue and not reliant on a systemic inflammatory response. Therefore, we hypothesized that MRL/MpJ mice may also exhibit a more robust homeostatic regulation of tendon structure in response to mechanical loading. To assess this, MRL/MpJ and C57BL/6J flexor digitorum longus tendon explants were subjected to stress-deprived conditions in vitro for up to 14 days. Explant tendon health (metabolism, biosynthesis, and composition), matrix metalloproteinase (MMP) activity, gene expression, and tendon biomechanics were assessed periodically. We found a more robust response to the loss of mechanical stimulus in the MRL/MpJ tendon explants, exhibiting an increase in collagen production and MMP activity consistent with previous in vivo studies. This greater collagen turnover was preceded by an early expression of small leucine-rich proteoglycans and proteoglycan-degrading MMP-3, promoting efficient regulation and organization of newly synthesized collagen and allowing for more efficient overall turnover in MRL/MpJ tendons. Therefore, mechanisms of MRL/MpJ matrix homeostasis may be fundamentally different from that of B6 tendons and may indicate better recovery from mechanical microdamage in MRL/MpJ tendons. We demonstrate here the utility of the MRL/MpJ model in elucidating mechanisms of efficient matrix turnover and its potential to shed light on new targets for more effective treatments for degenerative matrix changes brought about by injury, disease, or aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call