Abstract

AbstractMeteorological drought indices like the Standardized Precipitation Evaporation Index (SPEI) are frequently used to diagnose “ecological drought,” despite the fact that they were not explicitly designed for this purpose. More recently developed indices like the Evaporative Stress Index (ESI), which is based on the degree of coupling between actual to potential evapotranspiration, may better capture dynamic plant response to moisture limitations. However, the skill of these indices at describing plant water stress is rarely evaluated at sub‐seasonal timescales over which drought evolves. Moreover, it remains unclear how variability in phenological timing impacts and complicates early drought detection. Here, we compared the ability of ESI and SPEI to reflect the dynamics of ecological drought in forests and grasslands, based on anomalies of Gross Primary Productivity (GPP), surface conductance (Gs, a proxy for stomatal conductance), soil moisture, and vapor pressure deficit. ESI performed better than SPEI in capturing the dynamics of GPP and Gs, but still missed early ecological drought signals due to biases linked to earlier onset of spring leaf development. Thus, we developed a modified variant of the ESI () that accounts for the complicating effects of phenological shifts in leaf area index (LAI). The detected drought onset up to 7–10 weeks earlier than SPEI and ESI. Additionally, drought onset dates determined from are close to (±2 weeks) the dates determined from LAI‐corrected anomalies of Gs, and GPP, as well as the onset dates of soil water deficit and atmospheric aridity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.