Abstract
The eardrum is the primary component of the middle ear and has been extensively investigated in humans. Measuring the displacement and deformation of the eardrum under different quasi-static loading conditions gives insight in its mechanical behavior and is fundamental in determining the material properties of the eardrum. Currently, little is known about the behavior and material properties of eardrums in non-mammals. To explore the mechanical properties of the eardrum in non-mammalian ears, we investigated the quasi-static response of the eardrum of a common lizard: the Tokay gecko (Gekko gecko). The middle ear cavity was pressurized using repetitive linear pressure cycles ranging from −1.5 to 1.5 kPa with pressure change rates of 0.05, 0.1 and 0.2 kPa/s. The resulting shape, displacement and in-plane strain of the eardrum surface were measured using 3D digital image correlation. When middle-ear pressure is negative, the medial displacement of the eardrum is much larger than the displacement observed in mammals; when middle-ear pressure is positive, the lateral displacement is much larger than in mammals, which is not observed in bird single-ossicle ears. Peak-to-peak displacements are about 2.8 mm, which is larger than in any other species measured up to date. The peak-to-peak displacements are at least five times larger than observed in mammals. The pressure-displacement curves show hysteresis, and the energy loss within one pressure cycle increases with increasing pressure rate, contrary to what is observed in rabbit eardrums. The energy lost during a pressure cycle is not constant over the eardrum. Most energy is lost at the region where the eardrum connects to the hearing ossicle. Around this eardrum-ossicle region, a 5% increase in energy loss was observed when pressure change rate was increased from 0.05 kPa/s to 0.2 kPa/s. Other parts of the eardrum showed little increase in the energy loss. The orientation of the in-plane strain on the eardrum was mainly circumferential with strain amplitudes of about +1.5%. The periphery of the measured eardrum surface showed compression instead of stretching and had a different strain orientation. The TM of Gekko gecko shows the highest displacements of all species measured up till now. Our data show the first shape, displacement and deformation measurements on the surface of the eardrum of the gecko and indicate that there could exist a different hysteresis behavior in different species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.