Abstract
The capabilities of biometric systems have recently made extraordinary leaps by the emergence of deep learning. However, due to the lack of enough training data, the applications of the deep neural network in the ear recognition filed have run into the bottleneck. Moreover, the effect of fine-tuning from some pre-trained models is far less than expected due to the diversity among different tasks. Therefore, the authors propose a large-scale ear database and explore the robust convolutional neural network (CNN) architecture for the ear feature representation. The images in this USTB-Helloear database were taken under uncontrolled conditions with illumination, pose variation and different level of ear occlusions. Then they fine-tuned and modified some deep models on the proposed database through the ear verification experiments. First, they replaced the last pooling layers by spatial pyramid pooling layers to fit arbitrary data size and obtain multi-level features. In the training phase, the CNNs were trained both under the supervision of the softmax loss and centre loss to obtain more compact and discriminative features to identify unseen ears. Finally, three CNNs with different scales of ear images were assembled as the multi-scale ear representations for ear verification. The experimental results demonstrate the effectiveness of the proposed modified CNN deep model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.