Abstract
Morphological shape of the human ear presents a rich and stable information embedded on the curved 3D surface, which has invited lot attention from the forensic and engineer scientists in order to differentiate and recognize people. However, recognizing identity from morphological shape of the human ear using one sample image per person in training-set, with insufficient and incomplete training data, dealing with strong person-specificity can be very challenging. To address such problem, we propose a simple yet effective approach which uses and exploits local color texture descriptors in order to achieve faster and more accurate results. Support Vector Machine (SVM) is used as a classifier. We experiment with USTB-1 database consisting of several RGB ear benchmarks of different natures taken under varying conditions and imaging qualities. The experiments show excellent results beyond the state-of-the-art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.