Abstract

Distant supervision for relation extraction (DSRE) automatically acquires large-scale annotated data by aligning the corpus with the knowledge base, which dramatically reduces the cost of manual annotation. However, this technique is plagued by noisy data, which seriously affects the model’s performance. In this paper, we introduce negative training to filter them out. Specifically, we train the model with the complementary label based on the idea that “the sentence does not express the target relation”. The trained model can discriminate the noisy data from the training set. In addition, we believe that additional entity attributes (such as description, alias, and types) can provide more information for sentence representation. On this basis, we propose a DSRE model with entity attributes via negative training called EANT. While filtering noisy sentences, EANT also relabels some false negative sentences and converts them into useful training data. Our experimental results on the widely used New York Times dataset show that EANT can significantly improve the relation extraction performance over the state-of-the-art baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.