Abstract

We consider infinite-state discrete Markov chains which are eager: the probability of avoiding a defined set of final states for more than n steps is bounded by some exponentially decreasing function f(n). We prove that eager Markov chains include those induced by Probabilistic Lossy Channel Systems, Probabilistic Vector Addition Systems with States, and Noisy Turing Machines, and that the bounding function f(n) can be effectively constructed for them. Furthermore, we study the problem of computing the expected reward (or cost) of runs until reaching the final states, where rewards are assigned to individual runs by computable reward functions. For eager Markov chains, an effective path exploration scheme, based on forward reachability analysis, can be used to approximate the expected reward up-to an arbitrarily small error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.