Abstract

Our previous demonstration that severe experimental autoimmune encephalomyelitis (EAE) increases MnSOD protein abundance in the mouse kidney cortex led this study to elucidate the underlying mechanism with monensin-treated HEK293 cells as a model. Severe EAE increases mitochondrial protein abundance of SGK1 kinase and Tom20, a critical subunit of mitochondrial translocase in the renal cortex. In HEK293 cells, catalase inhibits monensin-induced increases of mitochondrial SGK1 and Tom20 protein levels. Further, GSK650394, a specific inhibitor of SGK1 reduces monensin-induced increase of mitochondrial protein abundance of Tom20 and MnSOD. Finally, RNAi of Tom20 reduces the effect of monensin on MnSOD. MnSOD and Tom20 physically associate with each other. In conclusion, in HEK293 cells, mitochondrial reactive oxygen species increase protein abundance of mitochondrial SGK1, which leads to a rise of mitochondrial Tom20, resulting in importing MnSOD protein into the mitochondria. This could be a mechanism by which severe EAE up-regulates mitochondrial MnSOD in the kidney cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.