Abstract
We prove that a semiregular topological space X X is completely regular if and only if its topology is generated by a normal quasi-uniformity. This characterization implies that each regular paratopological group is completely regular. This resolves an old problem in the theory of paratopological groups, which stood open for about 60 years. Also we define a natural uniformity on each paratopological group and using this uniformity prove that each (first countable) Hausdorff paratopological group is functionally Hausdorff (and submetrizable). This resolves another two known open problems in the theory of paratopological groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.