Abstract

Background We aimed to assess whether electroacupuncture (EA) at PC6 affects gastric motility via the vagovagal reflex and if so whether brainstem vagovagal neurocircuits and related transmitters are involved. Methods Gastric motility was measured in male Sprague-Dawley (SD) rats by placing a small manometric balloon in the gastric antrum. The rats were subjected to control, sham surgery, vagotomy, sympathectomy, and microinjection group, including artificial cerebrospinal fluid, gamma-aminobutyric acid (GABA), and glutamic acid (L-Glu). The effect of EA at PC6 on gastric motility was measured. Moreover, electrophysiological testing was used to measure the effect of EA at PC6 on the parasympathetic and sympathetic nerves. In addition, artificial cerebrospinal fluid, L-Glu, and GABA have been microinjected into the dorsal motor nucleus of the vagus (DMV) to measure the changes in gastric motility and parasympathetic nerve discharge induced by EA at PC6. Key Results EA facilitated the gastric motility in control group. In the vagotomy group, gastric motility was not affected by EA at PC6. However, in the sympathectomy group, gastric motility was similar to control group. Acupuncture at PC6 increased parasympathetic nerve discharge but not sympathetic nerve discharge. Furthermore, the microinjection of L-Glu into the DMV increased gastric motility, although EA at PC6 showed no remarkable change in this group. The injection of GABA reduced gastric motility and parasympathetic nerve discharge, but EA at PC6 significantly increased gastric motility and the parasympathetic nerve discharge in this group. Conclusions and Inferences EA at PC6—primarily by inhibiting GABA transmission to DMV—reduced the inhibition of efferent vagal motor fibers and thus promoted efferent vagus nerve activity and increased gastric motility.

Highlights

  • The digestive system (DS) consists of the upper digestive tract and the lower digestive tract

  • The brainstem vagovagal neurocircuits mainly include the nucleus of the solitary tract (NTS) and the motor vagus dorsal nucleus (DMV), and the gastric motility is regulated by the efferent vagus nerve originating from neurons located in the dorsal motor nucleus of the vagus (DMV)

  • The pressure was maintained at approximately 0.1kPa as baseline by expanding the volume of the balloon with warm water, and rhythmic contractions were recorded at a rate of 4–6/min with 0.2–0.3 kPa in amplitude

Read more

Summary

Introduction

The digestive system (DS) consists of the upper digestive tract and the lower digestive tract. The brainstem vagovagal neurocircuits mainly include the nucleus of the solitary tract (NTS) and the motor vagus dorsal nucleus (DMV), and the gastric motility is regulated by the efferent vagus nerve originating from neurons located in the DMV. Artificial cerebrospinal fluid, L-Glu, and GABA have been microinjected into the dorsal motor nucleus of the vagus (DMV) to measure the changes in gastric motility and parasympathetic nerve discharge induced by EA at PC6. The microinjection of L-Glu into the DMV increased gastric motility, EA at PC6 showed no remarkable change in this group. EA at PC6—primarily by inhibiting GABA transmission to DMV—reduced the inhibition of efferent vagal motor fibers and promoted efferent vagus nerve activity and increased gastric motility

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call