Abstract
BackgroundTongue cancer is still one of the leading causes of mortality around the world. Recently, the ubiquitin system has been established as a critical modulator of tumors. In order to find the oral cancer related E3 ubiquitin ligases, we screened the human E3 ubiquitin ligase library and found that RING finger protein 139 (RNF139) regulated the biological behavior of tongue cancer cells.MethodsMTT assay was used to analyze the cell viability changes of tongue cancer SCC9 and SCC25 cells caused by RNF139. The invasion ability of SCC9 and SCC25 cells with or without the knockdown of RNF139 was evaluated through transwell assay. The immunoblotting was recruited to determine the expression level of RNF139 in human tongue cancer tissues and para-carcinoma tissues. The effect of RNF139 on tumorigenicity of tongue cancer cells was analyzed by xenograft model on immunodeficient Balb/c nude mice.ResultsOverexpression of RNF139 inhibits the viability of tongue cancer cells since day 2. The colony formation ability of SCC9 and SCC25 cells was also decreased with the overexpression of RNF139. Knockdown of RNF139 significantly promoted the invasion ability of SCC9 and SCC25 cells. Furthermore, knockdown of RNF139 also induced the activation of AKT signaling pathway. While human tongue cancer tissues had low expression of RNF139. In nude mice, knockdown of RNF139 promoted the tumorigenicity of the SCC25 cells.ConclusionsOur data establish a role for RNF139 in regulating the progression of tongue cancer.
Highlights
Tongue cancer is still one of the leading causes of mortality around the world
RING finger protein 139 (RNF139) inhibits the viability of tongue cancer cells In order to elaborate the role of RNF139 in regulating the biological behavior of tongue cancer, we analyzed the viability changes of tongue cancer cells, SCC9 and SCC25 cells, induced by RNF139
The results suggested that overexpression of RNF139 significantly inhibited the viability of SCC9 and SCC25 cells (Fig. 1a)
Summary
Tongue cancer is still one of the leading causes of mortality around the world. Recently, the ubiquitin system has been established as a critical modulator of tumors. The dysfunction of P53 signaling pathway, phospho-inositide-3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) signaling pathway as well as transforming growth factor-β (TGFβ) signaling pathway plays a critical role in the carcinogenesis of tongue cancer. The activity of these signaling pathways is regulated by post-translational modification. Ubiquitination is one of the post-translational modification which involves in several cellular activity, including gene transcription, cell-cycle control, DNA repair and protein degradation [2,3,4,5] It is mediated by the sequential participated enzymes, E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases [6, 7]. The role of E3 ubiquitin ligases is still not well-understood, it is continuously being discovered [12–14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.